Poughkeepsie City Elementary Schools

Literacy Plan
Active Reading & Writing Strategies

Open-ended & Extended Response Prompts

5th GRADE

Source: Engage NY Released 5th Grade
ELA & Math Open-ended/Extended Response Items 2014

February 20, 2015
Poughkeepsie Elementary
Active Reading Strategies for
Open-ended & Extended Response
Prompts/Tasks

Unpack the Prompt

1. Read the prompt/task.

2. **Circle** key direction words.

3. **Underline** important information.

4. Restate prompt/task in your own words.

Read, Annotate, and Write

1. Read and annotate/underline evidence in the passage.

2. Invert prompt/task as topic sentence.

3. Write response and support with evidence.
Notes:
- For Unpacking the Prompt/Task you will need 3 sample prompts/tasks only.
- You will not need the text until you teach students to Read, Annotate, Write.
- When you are ready to teach all steps, you will need text and prompt/tasks.
- The prompt/task sets the purpose for reading and underlining/annotating the text.
- The underlined details in the text actually become the evidence students use to write after inverting the prompt/task.

Think Gradual Release of Responsibility (*from Teacher to Student*)
- Using the Smart Board, teacher models all 4 steps to Unpacking the Prompt.
- Teacher then models one step at a time, stopping and directing students to do that same step with a partner.
- Teacher asks student partners to collaborate to complete all steps of Unpacking the Prompt/Task.
- Each student works independently to practice all steps of Unpacking the Prompt/Task

Unpack the Prompt/Task
1. Read the prompt/task.
 - Teacher reads the prompt/task to students.
 - Students re-read the prompt/task with the teacher.
 - Each student re-reads the prompt/task to their partner.

2. Circle key direction words.
 - Teacher models circling key direction words in the prompt/task.
 - Students collaborate with their partner to circle key direction words on their own paper.
 - Each student circles key direction words independently.

3. Underline important information.
 - Teacher models underlining important information in prompt/task.
 - Students collaborate with partner to underline important information on their own paper.
 - Each student underlines important information independently.

4. Restate prompt/task in your own words.
 - Teacher models writing the prompt/task in his/her own words.
 - Students collaborate with partner to write the prompt/task in their own words.
 - Each student writes a prompt/task in own words independently.

Cathy Evans Truitt, Ph.D.

Senior Consultant, Scholastic Achievement Partners & International Center for Leadership in Education
Read, Annotate/Underline, and Write

1. Read and annotate passage. Underline evidence.
 • Teacher models reading and underlining/annotating evidence in the passage.
 • Students collaborate with a partner to re-read and underline/annotate evidence in the passage.
 • Each student reads and underlines/annotates evidence in a passage.

2. Invert prompt/task as topic sentence.
 • Teacher models inverting the prompt/task and writing it as a topic sentence.
 • Student partners collaborate to invert and write their topic sentence.
 • Each student works independently to invert the prompt/task and write a topic sentence.

3. Write response and support with evidence.
 • Teacher models writing the topic sentence and supporting evidence.
 • Student partners collaborate to write a topic sentence and support it with evidence they underlined in the passage.
 • Each student works independently to write a topic sentence and support it with evidence they underlined in the passage.
5th Grade Vocabulary Starter List

Note:

Please work with your students to define each vocabulary word and consider creating a word wall.

Work with your grade level team to decide if vocabulary words need to be added or deleted.

1. Prompt
2. Task
3. Evidence
4. Inferences
5. Insightful
6. Analysis
7. Literal
8. Logically
9. Generally/usually
10. Variety
11. Routinely
12. Mostly
13. Valid
14. Lack-of
15. Relevant
16. Support

Created by 5th grade teachers who participated in the Feb. 19-20, 2015 training
New York State Testing Program
Grade 5 Common Core
English Language Arts Test

Released Questions with Annotations

Open-ended test items only to print & use with students.

August 2014

See the complete test document for answers, sample student responses & rubrics.
Grace is a student intern with Dr. Watts, an oceanographer studying the effects of a recent oil spill on an ocean reef. When the co-pilot of their tiny submersible ship becomes ill, Grace must fill in, even though she is untrained and nervous about the dangers of sinking 1,600 feet below the surface of the ocean.

Deep!

by John Frizell

She opened her eyes and saw another world. The lights of the sub illuminated huge coral mounds, covered with thickets of delicate branches. There were crabs swarming over it and starfish dotted about. Tiny sea anemones sprouted from every patch of sand between the thickets. Everything looked gray-blue, but as they got closer and the sub's lights became more effective, colors blossomed on the starfish and anemones. Feathery white plumes of plankton, almost like snow, drifted in slow currents above the ocean floor. The vehicle hovered as they carefully monitored the area looking for visible signs of oil. There didn't appear to be any, Grace quickly noted. The weight of the ocean lay heavily upon her, and all she could think about was resurfacing.

“No oil,” she said joyously.

“None that we can see. Have you looked at the data logger?”

“Light is green.”

“Good. Can you explain how there could be oil affecting this area without us being able to see it?” Dr. Watts was maneuvering the sub. Its little electric thrusters were whining as it moved against the slow currents toward a reef mound and steadied itself in front of an outcrop.

“Well, oil has many toxic components, and some of them dissolve in water or can be suspended,” she answered. “So we could be in the middle of a high concentration and not see it.”

Grace didn't want to play academic games. She wanted to escape to the surface.

“That's correct,” said Dr. Watts. A short robot arm was unfolding from the sub, right in front of Grace.

“They injected emulsifier into the oil where it was escaping from the seafloor,” Watts explained. “That kept a lot of it from reaching the surface, but dispersed it into the deep
water. It may still be down here.” A claw at the end of the robotic arm closed on a branch of coral, broke it off, and then retracted to drop its prize into a sample container that opened to receive it and then closed tightly.

“Excellent. Now we have a sample that could tell us what has really happened,” Watts said.

“But it all looks so healthy.”

“Yes, it does. But effects may take a long time to show. This is a slow-growing ecosystem. Those reefs are millions of years old; it will take decades to measure the effects on them. And research money will become harder and harder to get. We need to sample as much of the deep ocean as we can before our funding runs out.”

The sub was in motion again, headed toward what looked like a huge cloudbank over a muddy bottom.

“No way,” she could hear Watts's frustrated voice.

The reef and most of the bottom had disappeared as they entered the cloud. The lights penetrated only a few feet into the gloom.

“I'm going to need your help, now,” he said urgently.

Grace's muscles and nerves tightened as the lights on the sub got brighter. A huge boulder loomed over the sub.

“Mustn't hit that,” she could hear Dr. Watts mumble.

Grace stared into the gloom. Sweat was running down her face despite the cooling system humming in the can.

“We need baseline data, and every sample is precious,” Watts said. “Can you see anything?”

Grace could see a coral branch that appeared and disappeared in the murky water.

“Yes.”

“I can't see anything. I can't even see the arm. It's in front of you. Tell me when the grab is on target.”

“I can hardly see it,” Grace warned. “It comes and goes.”

“Concentrate then. Concentrate.”

The arm was disappearing into the murk. She couldn't see the claw. When it cleared a moment later, the claw was touching the prize.

“Close.” She saw the claw close and miss as the sub drifted sideways.
“Didn’t get it. Open.” The grab disappeared again.

The thrusters whined as Dr. Watts pushed them away from the looming menace of the boulder. Grace stared into the floodlit gloom, waiting. There was a ripple in the current. A branch appeared.

“Up a few feet.”

The sub lilted. The claw brushed the branch.

“Hold steady and close.”

Just as the claw grabbed the coral, the cloud masked it.

“What happened?” asked Dr. Watts.

“On target. It’s ours!”

“Well done, Grace. Very well done!”
How does paragraph 1 prepare the reader for the rest of the story? Use two details from the story to support your response.
How to be a Smart Risk-Taker

by Steven R. Wills

1 If the key to becoming a pioneer or a trendsetter is to be a smart risk-taker, then how can we learn to become smarter risk-takers? Some people figure this out by accident, or stumble on the secret of success—but most of us have to take charge and make these things happen for ourselves. If you want to be a smart risk-taker, you need a plan. Here’s one:

STEP 1: Learn how to evaluate yourself.

2 How do you feel about the word “risk”? Does it make you think of danger, of anxiety, or of losing something? Or does it make you think of possibilities, of excitement, and of adventure? We aren’t all the same, and we need to be honest about it.

3 How do you feel about yourself? Sure, we all feel lousy about ourselves sometimes (although usually more than we have reason to). But when you think you have done well, what traits do you think made you succeed? Stanford University professor Dr. Carol S. Dweck discovered something interesting about the praise we receive when we do something well. She found that, if students were praised for being “smart,” they were less likely to take risks than students who were praised for “working hard.” Why? It seems that, if we think we do well just because we are smart, then we are less willing to try things where we might fail. However, if we think we are hard workers, then we are more willing to try things where we have to work hard—after all, that is what we are good at, right? Next time you succeed at something, recognize the work you put into it and the risks you took—don’t just figure it came to you because you were “smart” or “talented.”

4 Do you need to have things “all set” before you do something? Are you afraid of being rejected, and need the approval of others? Do you have to always be right? Are you unwilling to take the consequences for your actions? Do you look to others to solve a problem because you don’t believe you can do it? Do you need to play it safe? These are all ways of thinking that will get in your way if you want to be a smart risk-taker. If they describe you, then you know what you have to work on first. Remember, the way you think now can be changed—so get started.

5 On the other hand, are you willing to be vulnerable? Can you accept the consequences when things don’t work out? (Keep in mind that we are not talking about dumb risks.) Are you able to do things even though you aren’t likely to get the approval of your friends? Can you confront a problem and not blame it on someone else? These are the traits of a smart risk-taker. On to STEP 2.
STEP 2: Learn how to evaluate risks.

6 Evaluating a risk isn’t really difficult—although it can take some effort to do well. Think of it this way: A smart risk is one where the potential upside outweighs the potential downside. For example: Should you ask ____ to hang out with you? Best potential upside? He/She says “yes,” you have a great time, and maybe you get together again. Worst potential downside? He/She says “no,” and you are embarrassed for maybe a whole day. If that’s the worst that can happen, you would be crazy not to ask, right?

7 Of course, sometimes it’s more complicated than that. However, you can always write down the risk and make a list of upsides and downsides. Be thorough—you don’t want to miss anything—and then examine your list. Which side carries more weight? (Remember, it’s not the length of the list that matters, it’s the importance of the items on the list.)

8 As you become more practiced at evaluating risks, you will be surprised to find that many risks have very limited downsides, but potentially awesome upsides. Clearly, those are the risks you should go for. This seems so obvious, yet we don’t usually take these risks. Why not? One reason might be that, in your list, the downsides are all immediate and the upsides are all long term. Keeping long-term goals in mind will also help when your work doesn’t seem to be paying off. Sometimes you just have to slug along. It’s the old “no pain, no gain” thing.

STEP 3: Learn how to “make the move.”

9 Remember the slogan for Nike® shoes, “Just do it”? Well, there you go. You can only stand on the end of the diving board for so long. Sooner or later you are either going to have to climb back down (feeling lousy every step of the way) or you are going to have to dive. There is no third choice.

10 If you seem stuck on this step, don’t give up. There is a reason, and you need to find out what it is. Brainstorm for a bit. Are you stuck because you don’t really want this? Are you stuck because you think there is a better way to reach your goal? Pull out some scrap paper and make some lists. List alternative solutions. List reasons for not taking a risk in this case. List ways your life would be different if you didn’t take a risk. The answer to your dilemma is in there somewhere.

STEP 4: Try it out.

11 Try some small risks first. Try joining a club in school (the drama club?). Try learning a new skill (Piano? Lacrosse? Cooking?).

12 Once you get the idea, the only thing left is to be on the lookout. Smart risks (also called “opportunities”) come up all the time. Be ready to be a smart risk-taker.

Nike® is the registered trademark of Nike, Inc.
According to the author, what is the value of being a smart risk-taker? Use two details from the article to support your answer.

__

__

__

__

__
I sailed around the world. Alone. At age 16. Here's the amazing tale of my 13-month adventure.

Inspiration Leads to Action

Extreme sleep deprivation was just one of the challenges I faced on my journey that took 13 months and 28,000 miles to complete.

I got the idea for my trip after reading “Dove” by Robin Lee Graham, a teen who sailed the world alone in the 1960s. I started sailing when I was 4 and loved it. Sailing is such an extreme sport. It’s such an adrenaline rush. I bought my boat for $6,500 and my dad (a shipwright), my friends and I worked on it for four months to get it ready for the trip.

I was 16 when I left Marina del Rey, Calif., on June 14, 2008. Reaching Hawaii, the first stop, took longer than expected—23 days—because the winds were mostly light. When I passed the continental shelf, Pacific rollers—tall swells like super-long mountains in deep water—jostled my boat. Seeing the Hawaiian Islands for the first time, I felt elated because I had just crossed an ocean alone.

It was so amazing that I just started laughing.

Challenge After Challenge

In the early days of my trip, I slowly got used to the loneliness and lack of sleep. It was not unusual for me to stay up for 48 hours. It is weird how you can fall asleep standing up.

As I continued across the Indian Ocean, the *Intrepid* was accosted by strong winds. I was rocking and rolling on turbulent seas one morning when I found about 200 flying fish swept onto the deck. I hoped they would wash away so I wouldn't have to pick them off.

Then I found the lighters on my stove had all died and my matches were damp. I counted 32 left and rationed them so I could keep heating my food.

Keeping my matches dry, it turned out, was the least of my problems. I was still on the Indian Ocean one night when I was awakened by a loud, crashing sound and felt the boat being slammed around. I ran on deck and saw the tiller, used in turning the rudder to steer, had broken. The boom, which holds down the sail, had crashed to the other side of the boat and cracked in two pieces.
My main sail was sagging, but I managed to secure the boom. I was lucky the winds and current were in my favor as I maneuvered between two reefs to reach Home Island, a tiny island where I found a carpenter who made me a new boom from a chunk of teak.

One blistering hot day, I was working on deck and thinking about taking a swim. Then I saw a white shape moving under the water. Looking closer, I saw it was a shark. Not just one shark, but a school of them. These dangerous creatures were not like the dolphins in the Pacific that play around the boat. I was glad I hadn’t taken that swim.

Every day I got closer to home. Approaching Grenada, an island in the Caribbean Sea, I was trounced by a 20-foot high rogue wave at 2 a.m. When I saw the massive wave, I grabbed the mast and held on. It knocked the boat sideways, swamping it with water. I lost my electronics for four days. My parents were very relieved when I was finally able to call and let them know I was O.K.

For the Adventure

On July 16, 2009, I returned to Marina del Rey. I had celebrated my 17th birthday (eating a microwave cake) at sea. At the time, I was the youngest person to sail solo around the world and the first to do it before age 18.

I could not have made this voyage without my parents, who let me do it. When I started my trip, I was doing it more for the adventure and experience of it than for the record. I am glad to have the record because it shows that young people can accomplish much more than what is expected of them and what they expect of themselves.
How did the author's reasons for making the voyage change over the course of his adventure? Use two details from the article to support your response.
In “The Young Man and the Sea,” what lesson can be learned from the author’s trip around the world? Use two details from the article to support your response.
How does Zac Sunderland from “The Young Man and the Sea” demonstrate the ideas described in “How to be a Smart Risk-Taker”? Use details from both articles to support your response.

In your response, be sure to
• explain how Zac Sunderland from “The Young Man and the Sea” demonstrates the ideas described in “How to be a Smart Risk-Taker”
• use details from both articles to support your response
New York State Testing Program
Grade 5 Common Core
Mathematics Test

Released Questions with Annotations

Open-ended test items only to print & use with students.

August 2014

See the complete test document for answers, sample student responses & rubrics.
2-Point Holistic Rubric

Score Points:

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
</table>
| 2 Points | A two-point response includes the correct solution to the question and demonstrates a thorough understanding of the mathematical concepts and/or procedures in the task. This response:
 - indicates that the student has completed the task correctly, using mathematically sound procedures
 - contains sufficient work to demonstrate a thorough understanding of the mathematical concepts and/or procedures
 - may contain inconsequential errors that do not detract from the correct solution and the demonstration of a thorough understanding |
| 1 Point | A one-point response demonstrates only a partial understanding of the mathematical concepts and/or procedures in the task. This response:
 - correctly addresses only some elements of the task
 - may contain an incorrect solution but applies a mathematically appropriate process
 - may contain the correct solution but required work is incomplete |
| 0 Points* | A zero-point response is incorrect, irrelevant, incoherent, or contains a correct solution obtained using an obviously incorrect procedure. Although some elements may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task. |

* Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session completely blank (no response attempted).
3-Point Holistic Rubric

Score Points:

<table>
<thead>
<tr>
<th>Points</th>
<th>Description</th>
</tr>
</thead>
</table>
| **3 Points** | A three-point response includes the correct solution(s) to the question and demonstrates a thorough understanding of the mathematical concepts and/or procedures in the task. This response
- indicates that the student has completed the task correctly, using mathematically sound procedures
- contains sufficient work to demonstrate a thorough understanding of the mathematical concepts and/or procedures
- may contain inconsequential errors that do not detract from the correct solution(s) and the demonstration of a thorough understanding |

| **2 Points** | A two-point response demonstrates a partial understanding of the mathematical concepts and/or procedures in the task. This response
- appropriately addresses most, but not all aspects of the task using mathematically sound procedures
- may contain an incorrect solution but provides sound procedures, reasoning, and/or explanations
- may reflect some minor misunderstanding of the underlying mathematical concepts and/or procedures |

| **1 Point** | A one-point response demonstrates only a limited understanding of the mathematical concepts and/or procedures in the task. This response
- may address some elements of the task correctly but reaches an inadequate solution and/or provides reasoning that is faulty or incomplete
- exhibits multiple flaws related to misunderstanding of important aspects of the task, misuse of mathematical procedures, or faulty mathematical reasoning
- reflects a lack of essential understanding of the underlying mathematical concepts
- may contain the correct solution(s) but required work is limited |

| **0 Points** | A zero-point response is incorrect, irrelevant, incoherent, or contains a correct solution obtained using an obviously incorrect procedure. Although some elements may contain correct mathematical procedures, holistically they are not sufficient to demonstrate even a limited understanding of the mathematical concepts embodied in the task. |

* Condition Code A is applied whenever a student who is present for a test session leaves an entire constructed-response question in that session **completely** blank (no response attempted).
A racecar driver completed three laps in the times shown below.

- 39.28 seconds
- 38.9 seconds
- 37.83 seconds

What was the total time, in seconds, it took for the driver to complete the three laps?

Show your work.

Answer ________________ seconds
Isabella is playing a game with the decimal numbers shown below.

1.5 1.05 0.15 0.105 1.50 0.015

She has to place each of the decimal numbers in one of the boxes shown below so that it makes a true number sentence. Each decimal number goes in only one box.

\[
\begin{align*}
A & < B \\
C & > D \\
E & = F
\end{align*}
\]

On the line above each decimal number, write the letter of the box where that number belongs.
Anna recorded the time she spent at soccer practice to the nearest $\frac{1}{4}$ hour for 15 days. Her results are shown below.

TIME SPENT AT SOCCER PRACTICE (HOURS)

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>2 $\frac{1}{4}$</td>
<td>2 $\frac{1}{2}$</td>
<td>1 $\frac{3}{4}$</td>
<td>2</td>
<td>1 $\frac{1}{2}$</td>
</tr>
<tr>
<td></td>
<td>2 $\frac{3}{4}$</td>
<td>2 $\frac{1}{2}$</td>
<td>2 $\frac{1}{2}$</td>
<td>1 $\frac{3}{4}$</td>
<td>2 $\frac{1}{4}$</td>
</tr>
<tr>
<td></td>
<td>1 $\frac{3}{4}$</td>
<td>2 $\frac{1}{2}$</td>
<td>2</td>
<td>1 $\frac{3}{4}$</td>
<td>1 $\frac{3}{4}$</td>
</tr>
</tbody>
</table>

Make one line plot to display Anna's data over the 15-day period.

Be sure to

- title the line plot
- label the number line
- graph all the data
Each team in a youth basketball league pays $984 to join the league. If a team consists of 12 players and the fee is divided equally among the players, how much does each player pay?

Show your work.

_Answer $__________
Prism X is shown below. The volume of Prism Y is 10 cubic centimeters greater than the volume of Prism X.

What is the volume of Prism Y?

Answer __________ cubic centimeters

What could be the length, width, and height of Prism Y?

Answer __________ centimeters by __________ centimeters by __________ centimeters
Brittany needs a total of \(12\frac{3}{4}\) yards of yarn for an art project. She needs \(1\frac{3}{8}\) yards of blue yarn and \(5\frac{1}{2}\) yards of green yarn. The rest of the yarn she needs is red. How much red yarn does Brittany need?

Show your work.

\[\text{Answer} \quad \underline{\text{\hspace{2cm}}} \quad \text{yards}\]
An empty shipping box has a mass of 2.75 kilograms. An electronics store is packing 5 identical laptops in the shipping box. Each laptop has a mass of 1.65 kg.

The cost to ship the box was $40.00 for the first 5 kg and $3.15 for each kilogram over 5 kg. What was the cost to ship the packed box?

Show your work.

Answer $\underline{\quad}$
Last year, Bob’s Market ordered $15\frac{1}{2}$ pounds of plums from a local orchard. This year, the market plans to order $1\frac{1}{4}$ times as many pounds of plums as were ordered last year. They want $\frac{2}{5}$ of this order to be red plums. What is the total amount, in pounds, of red plums the market plans to order this year? Write your answer as a mixed number.

Show your work.

Answer _________________ pounds
Ann and Margie had a total of 3 gallons of paint to share for a project. They had 1 gallon each of red paint, blue paint, and yellow paint.

- To complete the project, Ann used $\frac{3}{8}$ of the red paint, $\frac{1}{4}$ of the blue paint, and $\frac{1}{2}$ of the yellow paint.
- To complete the project, Margie used $\frac{1}{2}$ of the red paint, $\frac{5}{8}$ of the blue paint, and $\frac{1}{8}$ of the yellow paint.

How many total gallons of each color of paint were left after both girls had finished the project?

Show your work.

Answer Red:_________ gallons Blue:_________ gallons Yellow:_________ gallons

Using the leftover paint, Ann and Margie decide to make green paint. They mix the yellow and blue paint together to make the green paint. How many gallons of green paint can they make?

Answer ________ gallons